
Écharde: enabling transparent
and modular sharding for Cloud

and Edge support services

Guillaume Rosinosky

Post-doc@Cloud Large-Scale Computing team (Pr. Etienne Rivière)

UCLouvain, Belgium

Intro

• Stateless services can scale easily, but what about the services
storing/transmitting state?

• Support services
• Persistence (databases),

• Communication (pubsub systems: Kafka, MQTT, ActiveMQ),

• Synchronisation(Zookeeper, etcd …)

• Can become a bottleneck, especially in a distributed setting
• Multi cloud, Edge/Fog, etc.

• (latency, data transfer cost...)

Écharde: enabling transparent and modular sharding for Cloud
and Edge support services

2

Sharding

• Split processing in multiple
partitions (shards) across multiples
instances

• Each shard is a single source
• Used in databases, blockchains,

pubsub, etc.
• Initially scalability, but also data

sovereignty, data locality, multi-
tenancy

• Routing based on content of
request (shard key) - content-based
routing

3
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

Sharding (messaging systems)

• Messaging systems
• Mailbox used for IPC or interthread communication classified by topic

• Most of the time, publish-subscribe pattern, usage of broker as an
intermediary node

• Examples: Kafka, Redis PubSub, MQTT, …

• Sharding could be made on topic, source of the message, payload …

Publishers Subscriber Subscriber

4
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

Sharding as a transversal feature

• « Manual » development can
become complex to handle

• « Generic » control plane-based
approaches
• General purpose sharding

frameworks:
• FB's ShardManager / Google's Slicer

• Solutions are proprietary, and need
specific libraries, and control plane

• Can we provide a low-code
approach for support services
sharding without specific
client/server and control plane?

• Example: Facebook’s Shard
Manager (SOSP’21)

5
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

Service meshes to the rescue

• Recent approach to manage
communication between microservices
without codebase modifications

• Features:
• Mostly HTTP observability, security,

encryption, routing, …

• Based on proxy intercepting
communications + control plane
• Integration with container orchestrators'

control plane (Kubernetes / Docker Swarm)
• Changes at runtime

• Increasing popularity since 2017 (Istio +
Linkerd)

• RQ1: Can we use service meshes so we
can do sharding for support services? https://servicemesh.es/

CC InnoQ

6
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

https://servicemesh.es/

Service meshes capabilities and limitations

• Proxy (reverse proxies)
• Routing capabilities: HTTP, TCP, UDP

• Content-based routing
• All: HTTP

• Some rare TCP plugins but not for all,
and dependant on proxy

• Envoy, Mosn, Linkerd-proxy, Nginx,…

• RQ2: can we enhance proxies with
a modular & low code approach
so they are able to enact CBR for
support services?

7
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

Our proposition

• Modular plugin able to route
support service requests
• But each protocol is different!

• … we don't need to recode them
completely.
• Request/response, pub/sub patterns

common between low-level protocols

• Usage of serialization/deserialization
when needed (widely available serde
libraries)

• Split / merge requests

• Some queries do not have the sharding
key ? Broadcast (slow) or replay.

Écharde: enabling transparent and modular sharding for Cloud
and Edge support services

8

Echarde

• Modifying the proxy codebase is not
very modular...

• Usage of WebAssembly Proxy-Wasm:
• Available on Envoy, Istio, MOSN,

OpenResty (Nginx)
• Can be modified / configured at runtime
• Features :

• Read/replace client/server sent TCP
packets, HTTP headers/payload

• Asynchronous HTTP/GRPC client

• Missing features:
• add way to initiate new client->server and

server->client TCP packets
• HTTP/GRPC server

Écharde: enabling transparent and modular sharding for Cloud
and Edge support services

9

Example of Redis MGET orchestration

Écharde: enabling transparent and modular sharding for Cloud
and Edge support services

10

RQ2: integration in
service meshes
• Our approach can be

naturally integrated with
service meshes

• Example configuration
service with Istio:

• TCP/GRPC bridge: sidecar of
the support service

11
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

Microbenchmarks: WIP

• Targets: Redis, InfluxDB, MQTT,
Kafka

• Microbenchmarks
• Raw overhead
• Breakdown
• Distributed (WIP)

• Docker Swarm
• 3 nodes: injector, proxy,

database/broker+bridge
• YCSB (Redis), YCSB-TS (InfluxDB),

Berserker (MQTT, Kafka)

12
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

Overhead (payload: 1kb)

Redis MQTT

13
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

Overhead (payload: 1kb)

Kafka InfluxDB

14
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

Macrobenchmark: WIP

• Macrobenchmark (WIP)
• Distributed Cloud/Edge IoT scenario

• Goal:
• minimize response time for alerts
• minimize data transfer to Cloud

• Platform: Sitewhere µservice
application using MQTT, Kafka,
InfluxDB

• Infrastructure:
• Kubernetes on Azure DC

• "Cloud": Ireland DC
• "Edge": Paris, Zurich, Frankfurt, low-

end machines
• Several hundreds of IoT devices (IoT-

lab) (Grenoble, Saclay, Strasbourg)

Écharde: enabling transparent and modular sharding for Cloud
and Edge support services

15

Conclusion

• Modular sharding approach for
proxies and service meshes
• Implemented:

• PubSub: MQTT, Kafka
• Database: Redis, InfluxDB

• 300 LoC (Redis), 140 LoC
(MQTT), 170 (InfluxDB), 320
(Kafka)

• Overhead (no routing): max 1ms,
~ 0.8 CPU per 1K RPS

• Experiments in progress

• Future work:
• Usage of method for more

features: caching, HA, consistency,
security

• Live migrations
• Network offloading (smart NIC)
• …
• More generally, use mesh for

transversal computing

16
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

SotA

Écharde: enabling transparent and modular sharding for Cloud
and Edge support services

17

Generic RR/PubSub library

• Routing component
• Able to orchestrate known protocols

• Database (Request/response)
• Messaging (Pub/sub)

• Client->Server: takes a TCP packet,
returns a map cluster->packet

• Server->Client: takes one (or many
packets), return a packet

• Protocol component
• Usage of low-level libraries to

serialize/deserialize TCP payloads
(available in most languages)
• Identify the type of request/response
• Use appropriate shard key

• Nagle/TCP packet split managed

18
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

TCP/GRPC bridge

Écharde: enabling transparent and modular sharding for Cloud
and Edge support services

19

Non shardable commands

Écharde: enabling transparent and modular sharding for Cloud
and Edge support services

20

RQ2: Harness database protocol: Redis (RR)

21
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

RQ2: Harness messaging protocol: MQTT

• Publish (1 Request / 1 Response) • Subscribe (1 Request / n
Responses)

22
Écharde: enabling transparent and modular sharding for Cloud

and Edge support services

	Diapositive 1 Écharde: enabling transparent and modular sharding for Cloud and Edge support services
	Diapositive 2 Intro
	Diapositive 3 Sharding
	Diapositive 4 Sharding (messaging systems)
	Diapositive 5 Sharding as a transversal feature
	Diapositive 6 Service meshes to the rescue
	Diapositive 7 Service meshes capabilities and limitations
	Diapositive 8 Our proposition
	Diapositive 9 Echarde
	Diapositive 10 Example of Redis MGET orchestration
	Diapositive 11 RQ2: integration in service meshes
	Diapositive 12 Microbenchmarks: WIP
	Diapositive 13 Overhead (payload: 1kb)
	Diapositive 14 Overhead (payload: 1kb)
	Diapositive 15 Macrobenchmark: WIP
	Diapositive 16 Conclusion
	Diapositive 17 SotA
	Diapositive 18 Generic RR/PubSub library
	Diapositive 19 TCP/GRPC bridge
	Diapositive 20 Non shardable commands
	Diapositive 21 RQ2: Harness database protocol: Redis (RR)
	Diapositive 22 RQ2: Harness messaging protocol: MQTT

